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SUMMARY

Using the famous airline data as the main example, a variety of neural network (NN)
models are fitted and the resulting forecasts are compared with those obtained from the
(Box-Jenkins) seasonal ARIMA model called the airline model. The results suggest that
there is plenty of scope for going badly wrong with NN models and that it is unwise to
apply them blindly in ‘black-box’ mode. Rather the wise analyst needs to use traditional
modelling skills to select a good NN model, for example in making a careful choice of
input variables. The BIC criterion is recommended for comparing different NN models.
Great care is also needed when fitting a NN model and using it to produce forecasts.
Methods of examining the response surface implied by a NN model are examined as
well as alternative procedures using Generalized Additive Models and Projection Pursuit
Regression.
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1 Introduction

Neural networks (hereafter abbreviated NNs) have been vigorously promoted in the com-
puter science literature for tackling a wide variety of scientific problems. Recently, in-
vestigations have started to see how useful NNs are for tackling statistical questions in
general (Ripley, 1993, 1996; Cheng and Titterington, 1994), and for time-series modelling
and forecasting in particular (e.g. Hill et al., 1994, 1996; Gorr et al., 1994). Despite some
impressive claims, the empirical results using NN models have been rather mixed — see
for example Chatfield (1993) and the review in Section 3 of Hill et al. (1996) — though
the results in Section 7 of the latter paper using the M-competition data do provide
some evidence that NN models may be able to give more accurate forecasts on average
over a diverse collection of time-series data than some alternative univariate forecasting
procedures.

It is pertinent to ask whether the success of NN modelling depends on (a) the type of
data (b) the skill of the analyst in selecting a suitable NN model and/or (¢) the numerical
methods used to fit the model and compute predictions. Experience for question (a) can
be built up with large-scale forecasting competitions, while case studies can be used to
address questions (b) and (c¢). This paper describes a case study which aims to do just
that.

2 Box-Jenkins analysis of the airline data

The main time series used in this paper is the so-called airline data, made famous by
the first edition (in 1970) of Box et al. (1994, Series ), though it was earlier given by
Brown (1962). Fig. 1 shows that the data have an upward trend together with seasonal
variation whose size is roughly proportional to the local mean level and hence is said to
be multiplicative.

The standard Box-Jenkins analysis (e.g. Harvey, 1993; Box et al., 1994) generally
incorporates taking a logarithmic transformation of the data in order to make the seasonal
effect additive (see Fig. 1), and then taking one seasonal and one non-seasonal difference
in order to make the series stationary. One seasonal and one non-seasonal moving average
terms are then fitted. The resulting model is a special type of seasonal ARIMA model,
often called the airline model. The model is of order (0,1,1) x (0,1,1);5 in the usual
notation (see for example Box et al., 1994, p. 333). This model is generally regarded
as being the most suitable model for this particular set of data and will be used as the
yardstick for NN models, though many other seasonal ARIMA models could be fitted
which give measures of fit and forecast accuracy nearly as good as those for the airline
model.

Most of the results reported in this paper are computed by fitting a model to the first
11 years of data and then making forecasts of the last 12 observations. The latter will be
computed in two different ways. Firstly all forecasts will be made from time period 132
using the first 11 years data only. These forecasts will be called Multi-step (abbreviated
MS) forecasts. Secondly, forecasts will be made one step (abbreviated 1S) ahead so that
the observed data are brought in one at a time. For example the value at time 134 is
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Figure 1: The airline data. Monthly totals of international airline passengers from Jan-
uary 1949 to December 1960. Upper graph - The raw data; Lower graph - the logarithms.



forecast using the observed value at time 133. The model is not refitted at each step
when computing the one-step forecasts.
For each model fitted, using data up to time 7', we computed the following statistics:

1. S = the sum of squared residuals up to time 7' (the residuals are the within-sample
one-step-ahead forecast errors).

2. 6 = 4/S/(n — p) = estimate of residual standard deviation, where n denotes the
number of effective observations used in fitting the model and p denotes the number
of parameters fitted in the model. Thus when fitting the airline model to the airline
data with 7" = 132, the value of n is (132-13) = 119 (since 13 observations are ‘lost’
by differencing), and the value of p is taken to be 2 (since there are non-seasonal
and seasonal moving average parameters).

3. AIC = Akaike’s information criterion = nln(S/n) + 2p
4. BIC = Bayesian information criterion = nIn(S/n) + p+ plnn

5. SSus = sum of squares of multi-step-ahead forecasts made from time 7'+ 1 to the
end of the series. These are the out-of-sample (genuine ex-ante) forecasts.

6. SS1s = sum of squares of one-step ahead (out-of-sample) forecasts.

For the airline model fitted to the airline data with 7' = 132, the MINITAB package
(Release 9.1) gave the following values (after backtransforming all forecasts from the
model for the logged data into the original units): (i) S = 10789; (ii) & = 9.522; (iii)
AIC = 540.35; (iv) BIC = 547.91; (v) SSwms = 3910; (vi) SS1s = 4328. Note that the 1S
forecasts happen to have slightly worse accuracy than the MS forecasts as will happen
occasionally. Note that, if the airline model is fitted to the raw data, rather than to the
logs, then the fit is about 20% worse (S = 12920) while the accuracy of forecasts suffers
even more (e.g. SSyrs = 5230 is 34% worse).

An alternative way to compute forecasts for the airline data, without taking logs, is to
use the multiplicative version of Holt-Winters exponential smoothing. The Holt-Winters
method typically gives forecasts which have comparable accuracy to those obtained from
the Box-Jenkins approach, especially for series whose variation is dominated by trend
and seasonal variation (see for example Chatfield and Yar (1988)), and we verified this
for the airline data. It is worth noting that the multiplicative version of Holt-Winters is
inherently non-linear in that the formula for a point forecast is not a linear function of
past observations. Likewise the linear ARIMA model fitted to the logged data implies a
non-linear model for the original data. This suggests that it should be worth trying an
NN model applied to the original (as opposed to the logged) data to see if the non-linear
flexibility of NN models can cope with multiplicative seasonality.

3 Neural networks

The following brief account of NNs, and how to fit them, is intended to make this paper
as self-contained as possible. However the reader may find it helpful to read Ripley
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(1993), Gorr et al. (1994, Section 2) and/or Chatfield (1996, Section 11.4). In addition it
might also be helpful to read an introduction from a computer science perspective such
as Hertz, Krogh and Palmer (1991) and Gershenfeld and Weigend (1994).

This paper restricts attention to one (popular) form of (artificial) NN called the
feedforward NN with one hidden layer. In time-series forecasting, we wish to predict
future observations using some function of past observations. One key point about NNs
is that this function need not be linear, so that a NN can be thought of as a sort of
non-linear regression model.

Inout laver Hidden laver Outnut

>

Figure 2: The architecture of a typical neural network for time-series forecasting with
one hidden layer of 2 neurons. The output (the forecast) depends on the lagged values
at times (¢ — 1) and (¢ — 12)

Fig. 2 depicts a typical architecture as applied to time-series forecasting with monthly
data. The value at time ¢ is to be forecasted using the values at lags one and twelve. The
latter are regarded as inputs while the forecast is the output. The illustrated example
includes one hidden layer of two neurons (often called nodes or processing units or just
units). In addition there is also a constant input term which for convenience may be
taken as unity. Each input is connected to both the (hidden) neurons, and both neurons
are connected to the output. There is also a direct connection from the constant input
to the output. The “strength” of each connection is measured by a weight. A numerical

value is calculated for each neuron in two stages. First a linear function of the inputs is
3

found, say Zwij y; where w;; denotes the weight of the connection between input y; and
the jth netirén. The values of the inputs in our example are y; = unity, ¥y = x;_1; and
Y3 = ;_12. The linear sum, say v;, is then transformed by applying a function called
an activation function, which is typically non-linear. A commonly used function is the
logistic function, z; = 1/(1 4 e™*), which gives values in the range (0,1). In our example
this leads to values z; and z; for the two neurons. A similar operation could then be



applied to the values of 21, z3 and the constant input in order to get the predicted output.
However note that the logistic function should generally not be used at the output stage
in time-series forecasting because it constrains the forecast to lie in the interval (0,1).
Instead a linear function of the neuron values is typically used, as in our case study. This
means that the activation function at the output stage is just the identity function.

The introduction of a constant input unit connected to every neuron in the hidden
layer and also to the output avoids the necessity of separately introducing what computer
scientists call a bias, and what statisticians would call an intercept term, for each unit.
Essentially the biases just become part of the set of weights (the parameters).

For a NN model with one hidden level, the general prediction equation for computing
a forecast of z; (the output) using selected past observations, x:_;,...,z;—j,, as the
inputs, may be written (rather messily) in the form:

Ty = P (wco + Z Who Ph (wch + Z Wi, xt—ji)) (1)
h i

where {w.,} denote the weights for the connections between the constant input and the
hidden neurons and w,., denotes the weight of the direct connection between the constant
input and the output. The weights {w;,} and {ws,} denote the weights for the other
connections between the inputs and the hidden neurons and between the neurons and the
output respectively. One minor point to note is that the labels on the hidden neurons can
be permuted without changing the model. The two functions ¢, and ¢, denote the the
activation functions used at the hidden layer and at the output respectively. Throughout
this case study ¢, is taken to be the logistic function whereas ¢, is taken to be the
identity function in order to ensure, as noted earlier, that the forecasts are not restricted
to the range (0,1). We use the notation NN(j1,...,Jk; k) to denote the NN with lags
J1y+--,Jk and h neurons (or units) in the one hidden layer. Thus Fig. 2 represents a
NN(1,12;2) model.

The weights to be used in the NN model are estimated from the data by minimizing
the sum of squares of the within-sample one-step-ahead forecast errors, namely S =
Si(2¢ — x4)?, over the first part of the time series, called the ¢raining set in NN jargon.
In our case study this is usually the first 11 years data. The minimization is no easy
task as the objective function often has several local minima and the number of weights
may be large. Various numerical algorithms have been proposed but we used some
software written in the S-PLUS language by Brian Ripley (See Venables and Ripley, 1994).
The training algorithm for selecting the weights may take several hundred iterations to
converge, but may still converge to a local minimum. The starting values chosen for the
weights can be crucial and it is advisable to try several different sets of starting values to
see if consistent results are obtained. Note that other packages carry out the numerical
fitting in different ways. For example a technique called simulated annealing can be used
to try to avoid local minima but this requires the analyst to set numerical parameters
with names like ‘the cooling rate’, and even then there is no guarantee that convergence
to a global minimum will occur.

The last part of the time series, called the test set, is kept in reserve so that genuine
out-of-sample (ex-ante) forecasts can be made and compared with the actual observations.



Equation (1) effectively gives a one-step-ahead forecast as it uses the actual observed
values of all lagged variables as inputs. If multi-step-ahead forecasts are required, then it
is possible to proceed in one of two ways. Firstly, one could construct a new architecture
with several outputs, giving Z;, 141, T¢42,..., where each output would have separate
weights for each connection to the neurons. Secondly, one could ‘feed back’ the one-step-
ahead forecast to replace the lag-one value as one of the input variables and the same
architecture could then be used to construct the two-step-ahead forecast, and so on. We
adopted the latter iterative approach, as did Hill et al. (1996), because of its numerical
simplicity and because it requires fewer weights to be estimated.

Even so, the number of parameters in a NN model is typically much larger than in
traditional time-series models, and for a single-layer NN model is given by p = (n; +
2)n, + 1 where n; denotes the number of input variables (excluding the constant) and
np denotes the number of hidden neurons. For example the architecture in Fig. 2 (where
n; and ny are both two) contains 9 connections and hence has 9 parameters (weights).
Because of this large number, there is a real danger that the algorithm may “overtrain”
the data and produce a spuriously good fit which does not lead to better forecasts.
Some recent research (Ripley, 1995) has focussed on the need to penalize the fitting of
extra parameters rather than just optimize goodness-of-fit, and the use of something
like Akaike’s information criterion (AIC) is needed to prevent the fitting of spurious
parameters.

NN modelling is non-parametric in character and it has been suggested that the
whole process can be completely automated on a computer “so that people with little
knowledge of either forecasting or neural nets can prepare reasonable forecasts in a short
space of time” (Hoptroff, 1993). This black-box character can be seen as an advantage
or disadvantage. Certainly black boxes can sometimes give silly results and NN models
obtained in this way are no exception. Thus Gershenfeld and Weigend (1994, p. 7) say
that “there was a general failure of simplistic ‘black-box” approaches — in all successful
entries (in the Santa Fe competition), exploratory data analysis preceded the algorithm
application”. The results from our case study also demonstrate that a good NN model for
time-series data must be selected by combining general traditional modelling skills allied
with knowledge of time-series analysis and the particular problems involved in fitting NN
models. Our case study will focus on: (i) the choice of input variables; (ii) the choice of
the number of neurons in the hidden layer; (iii) the numerical procedure for estimating
the weights including the choice of starting values; (iv) the criterion for selecting the
‘best’” model.

4 Fitting NN models to the airline data

The Appendix gives information on the software used to fit the NN models. We immedi-
ately ran into two practical problems. The untransformed airline data lies in the range
104 to 622. The default choice of the activation function at the output stage is the logistic
function, but this constrains the output (the forecasts) to be in the range (0,1). Failure to
specify the identity activation function gave ridiculous results. Furthermore the starting
values used in the algorithm are out of scale with the input values so that the fitting



S SSms  SSis
2.305 0.351 0.344
2.490 0.332  0.328
2492 0.350  0.347
2.409 0.346 0.310
2377 0.343  0.308
2.316 0.378  0.376
2.510 0.439 0.403

Table 1: Fit and forecast accuracy from seven local minima for the NN (1,12;2) model

algorithm failed to converge in a sensible way. Thus we found it necessary to rescale
the data, and dividing by 100 was found to work satisfactorily. All subsequent numbers,
including forecasts, refer to these scaled data. We could have temporarily overcome both
the above problems by dividing by 1000, rather than 100, since this would have ensured
that all short-term forecast were in the range (0,1). However the series will clearly exceed
the value 1000 within a year or two, and it is safer to use the identity activation function
at the output stage in time-series forecasting. Both the above problems might have been
expected from a careful reading of the manual and may not be present in other packages,
but the need for attention to such details is clear.

Another serious problem arises because consecutive restarts of the fitting algorithm,
with different random starting points for the weights, typically finds several different
local minima (or even saddle points). For example, seven distinct local minima were
found for the NN(1,12;2) model and the resulting fit and forecast accuracy are given in
Table 1. We checked that the Hessian is positive definite for all seven minima (though
this can be difficult to do because the minima tend to be flat) to ensure that they do
all represent local minima. As the algorithm often converges to a saddle point, it really
is important to check the Hessian. Even though we restarted the algorithm many times
from different starting points, there is no guarantee that the first model in Table 1 (which
has the smallest S-value) gives the global minimum. All the models discussed below are
the result of refitting the model at least 50 times from different random starting points
and taking the best of the resulting minima.

It is unfortunate that the fitted weights are not stable across different minima. Table
2 shows the fitted weights for the second and seventh minima in Table 1 and large
differences are apparent. In particular, note that the second neuron in the first model
has much more weight to the output than the first neuron, whereas the two neurons in
the second model have near equal weights. This instability suggests that it is generally
unwise to try to interpret individual weights. Even at the global minimum, it is possible
that the weights of the corresponding model could be changed substantially without
changing the fit or the predictions very much (as in near multicollinear regression).

We now compared various NN models having different input (lagged) variables and
different architectures. All models had one hidden layer and were fitted using the first
11 years data. They were then used to predict the last 12 observations. When several
models are compared, having different numbers of parameters, the residual mean square



We w11 W21 We2 W12 W9 Weo Wio W20
2761 4.19 4.62 -0.86 0.05 0.23 -4.62 -0.14 16.10
-4.71 0.01 0.74 -0.93 0.20 0.3 -1.40 6.73 5.32

Table 2: Comparison of weights from two different local minima. The notation is defined
in Section 3.

no. of

hidden no. of Predictions
lags neurons pars. S o AIC BIC SSus SSis
1,2,3,4 2 13 7.738 0.245 -379.4 -328.1 58.52 1.027
1-13 2 31 0.726 0.091 -544.8 -427.6 1.078 0.709
1-13 4 61 0.264 0.067 -605.1 -374.6 4.116 1.122
1,12 2 9 2.305 0.144 -456.3 -422.2 0.351 0.344
1,12 4 17 2.164 0.145 -447.7 -383.5 0.376  0.443
1,12 10 41 1.774  0.150 -423.7 -268.4 0.508 0.592
1,2,12 2 11 2.173 0.141 -459.4 -417.7 0.339 0.291
1,2,12 4 21 1.914 0.139 -454.6 -375.1 6.820 1.032
1,2,12,13 2 13 0.993 0.097 -543.5 -494.4 0.374 0.519
1,2,12,13 4 25 0.814 0.093 -543.1 -448.7 0.339 0.517
1,12,13 1 6 1.180 0.102 -537.1 -514.4 0.334 0.504
1,12,13 2 11 1.031 0.098 -543.1 -501.4 0.329 0.503
1,12,13 4 21 0.845 0.093 -546.8 -467.4 0.538 0.621
BJ 2 1.079 0.095 -555.7 -546.1 0.391 0.432

Table 3: Comparison of various NN models together with the corresponding values for
the Box-Jenkins airline model

over the fit period will not provide a fair comparison but will be biased towards models
with many parameters. Model selection criteria such as the AIC and BIC, defined in
Section 2, provide a fairer comparison (see for example Priestley, 1981). For NN models,
the number of parameters, p, is the number of weights, while n, the number of effective
observations, depends on the maximum lag. The results for a range of models are shown
in Table 3. The symbols are defined in Section 2. Table 3 also includes the corresponding
values for the Box-Jenkins airline model, as already fitted in Section 2, but note that the
numbers have been suitably scaled to make them comparable to the NN values fitted to
the data divided by 100. In particular, note that the scaled AIC and BIC values have
been obtained by subtracting 119 In(10000).

The NN(1-4;2) model is the sort of model which might be tried by someone without
any training in time series — clearly its fit is poor and its predictive performance, partic-
ularly in the long term, is awful. Someone with slightly more experience, realising this
is annual data, might use all lags up to lag 12, or indeed up to 13 or even more if they
were feeling extravagant. These models, with lots of parameters, achieve small S-values



Lag
1 2 3 4 5 6 7 8 9 10 11 12 13

1 026 -0.06 0.02 -0.01 0.05 -0.05 0.06 0.01 0.06 -0.09 -0.03 0.21 -0.20
2 2770 -3.47 253 -0.69 -1.39 -0.36 2.52 4.27 2.16 -4.25 -3.05 243 -3.31

Table 4: Weights in the NN(1-13;2) model for the connections from the 13 lagged

values to the two hidden neurons

which might lead the naive to suppose that they had found a good model, especially in
view of the AIC values. However the BIC values tell a different story and the predictive
performance is poor. With some knowledge of time series, it might seem reasonable to
include lag 12 without all the intervening lags as inputs and these models do give rea-
sonable predictive performance provided not too many hidden neurons are used. It is
arguable that only prior knowledge of the Box-Jenkins analysis would suggest the use of
the lag 1,2,12,13 or lag 1,12,13 models which generally lead to better forecasts and BIC
values.

If the model is chosen on the basis of minimizing the AIC or & (where the latter is
comparable to adjusted R?), then the NN(1-13;4) model will be selected leading to
poor predictions. Of course, experienced statisticians would guess intuitively that the
use of so many inputs cannot lead to good results and so would likely never fit such a
model in the first place. In contrast the BIC criterion picks the NN(1,12,13;1) model
which is quite plausible and does give sensible results. Clearly, in this context, the use
of AIC does not do enough to penalize extra parameters. Even so, notice that the best
NN model does not give such a good BIC value as the Box-Jenkins model though its
forecasts are comparable.

A natural question to ask is whether the better models found above (i.e. ones that
include lags 1, 12 and maybe 13, but excluding intervening lags) could have been discov-
ered without the use of Box-Jenkins? In order to answer this question, consider Table
4 which shows the weights of the connections between the 13 lagged values and the two
neurons in the NN (1-13;2) model. Notice that the weights connecting the lagged values
to the first hidden neuron show small values for lags 2—11. This does suggest dropping
the intermediate lags. Admittedly for connections to the second hidden neuron, lags
2—11 have larger weights, but the weights from the two hidden neurons to the output
unit are 16.04 and -0.90 respectively, so that second hidden neuron has a much lower
effect on the output. Thus, in this case, an examination of the weights does turn out
to be useful. However, in view of the instability in estimating the weights mentioned
earlier, this may be the exception rather than the rule and our experience in Chatfield
and Faraway (1996) suggests the former.

Why does having too many hidden neurons result in poor performance? Consider
the NN(1,2,12) model with either 2 or 4 hidden neurons. The prediction surface for
this varies over the three lags so it is not possible to plot it directly but we can view it
along specified directions. In Fig. 3 the predicted one-step response is plotted along the
line ;1 = x4_9 = 0.87x;_12 + 0.07 , chosen because the data is dense in this direction.
Notice how the NN(1,2,12;4) model contorts to achieve a better fit to the middle range
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of the data but that this causes the prediction to be pulled down for higher values.
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Figure 3: Predicted response for NN(1,2,12;2) (solid line) and NN(1,2,12;4) (dotted
line) models along the direction z;—y = 24— = 0.87x;_12 + 0.07

Some other NN models were considered that were not the result of a pure neural
network approach since they involve some intelligent pre-examination of the data, as a
sensible statistician might naturally carry out. Fig. 1 reveals that the variation increases
with the level which suggests transforming the data in order to stabilize the variance.
Here the log transformation seems most appropriate, and three plausible NN models were

explored:

1. A NN(1,12,13;2) model (for the logs).

2. Remove the linear trend (from the logs) and then remove the seasonal trend by
subtracting the monthly averages. Then apply a NN(1-4;2) model.

3. Apply VVy, differencing (to the logs) and then use a NN(1-4;2) model.

The results are shown in Table 5. Fitted values and predictions were transformed back
to the original scale so that the entries in the table are comparable to those appearing
in Table 3. Note the similarity in the fits between the NN(1,12,13;2) models for the
untransformed and the log-transformed data (in contrast to what was found for the Box-
Jenkins models). A possible explanation is the local linearity of the log transformation —

11



no. of Predictions

Model pars S o AIC BIC SSus SSis

1 11 1.043 0.098 -541.7 -500.1 0.438 0.633
2 13 0.959 0.091 -600.4 -550.3 0.659 0.565
3 13 1.142  0.105 -504.4 -455.7 4.35 0.674

Table 5: Results for three NN models fitted to the logged data

the ratio of the maximum to minimum values for the whole series is about 5 but since the
current fit depends only on the values at lags 12 and lag 13 then it is the ratio z;/z;_12,r13
which matters. The maximum value of this ratio is 1.4 so the curvature introduced by
the log transform is not a big factor.

An interesting question is whether taking logs should count as an extra parameter.
In model 2, the fit criteria look very good but one might argue that the detrending and
deseasonalizing represent (2 + 12) = 14 more parameters so that the true number of
parameters is really 27 and not 13. Recalculating AIC, BIC and & on this basis gives
-572.4, -468.4 and 0.097 respectively, which makes the model less persuasive.

Model 3 (a NN(1-4;2) model for VVi; differences of the logs) gives inferior fit
criteria and much worse multi-step forecasts compared with model 2 (the detrended,
deseasonalized alternative). One reason for this is that there are only 115 observations
used in the former model but 128 in the latter, but there is a major question as to what
should be the true number of parameters in these models. More to the point, model 3 is
not only worse than the airline model (see Table 3) but even gives worse forecasts than
just using the ‘naive’ model VV 15 log z;. Forecasts from the latter give SSyrs = 2.16 and
SS51s = 0.683. It appears that NN models cannot capture moving-average-type structure
and that putting more units into a hidden layer makes things worse rather than better.

A final point to notice about all the models considered in this section is that the
within-sample (fit) estimate of the error standard deviation (i.e. &), is typically much

less than the prediction error standard deviation, namely 1/5S15/12. The best values of
¢ are around 0.1 ; while the best estimate of of the prediction error standard deviation is
0.15 (for the NN(1,2,12;2) model) but is more typically around 0.2 . This is a common
phenomenon in time-series forecasting where within-sample fit always appears better
than out-of-sample prediction. The over-optimism caused by choosing the best of many
fitted models and then behaving as if the selected model were known to be true has been
well documented in work on model uncertainty (e.g. Chatfield, 1995).

5 Alternative ways of looking into the ‘black box’

One major criticism levelled at NN models is that they provide a “black-box” approach
which may produce satisfactory predictions but generally provides little insight into the
structure of the data. It can be very hard to interpret a NN model. So let us see if we
can look inside the black box. When there are only two inputs, it is possible to plot
the prediction surface as in Fig. 4 for the NN(1,12;2) model. Notice that the surface is

12



non-linear. However if attention is focussed on the region where most of the data occur
(which is around the main diagonal) then the surface is close to linear.

Predicted

Figure 4: Prediction surface for the NN(1,12;2) model (in scaled units)

When there are more than 2 inputs, it is not possible to plot the prediction sur-
face so easily and we can only view the predictions along specified directions. For the
NN(1,2,12,13;2) model, Fig. 5 shows the predicted response along the direction of the
first principal component of {z;_1, x;_2, T;_12, x;_13} as z,_1 varies. Most of the data lies
within a distance £0.2 in the direction of the second principal component where we see
that the prediction surface is close to linear. This happens because the weighted sum
of the inputs into the hidden neurons, that have some weight in the output, happen to
fall in the central, nearly linear, region of the logistic activation function. Thus these
plots (which are not usually considered in NN analysis), demonstrate that the prediction

13



no. of Predictions

lags pars. S o AIC BIC SSus SSis
1,12,13 13 1.136 0.104 -527.5 -478.4 0.431 0.553

Table 6: GAM results

surface is approximately linear in the region of interest. Such plots will not necessarily
be useful for all data and all NN models but they are valuable here.

We now go on to consider some alternative modern statistical methods which can give
similar results more directly. Generalized Additive Models (GAM) (Hastie and Tibshirani,
1990) can be used to represent the predicted response in terms of a sum of functions of
the chosen inputs. Choosing lags 1, 2, 12 and 13 for example, this may be written:

Ty = filzimr) + fa(zem2) + fia(ziiz) + fis(@iis)

where the the functions f; are estimated nonparametrically. Using S-PLUS software, the
GAM was fitted as described in Chambers and Hastie (1992), where the functions f; were
estimated using splines. The estimated functions along with +2 standard error pointwise
confidence bands are shown in Fig. 6.

The fitted function for z;_5 is not significantly different from constant zero so we have
the immediate message that this variable may be excluded from the model. In addition,
the other fitted functions are all very close to linear. If z;_5 is excluded the refitted
GAM gives a very similar fit. The GAM can be used to make predictions when splines
are used for the fitting since these fits can be extrapolated. Of course, it is dangerous
to extrapolate too far but the same problem would arise with a NN model. The results
are shown in Table 6 and it can be seen that the results are comparable to the best NN
models obtained earlier.

We have tried GAMs on other time series and have found it to be a useful exploratory
technique. In particular when applied to the famous sunspots data (e.g. Chatfield, 1996,
Fig. 11.1; de Groot and Wiirtz, 1991), which nearly everyone agrees is not linear, the
functions were indeed found not to be linear but to be approximately two straight lines
with a bend in the middle indicating that a threshold model might be appropriate.

An alternative approach is provided by Projection Pursuil Regression (PPR) (see
Friedman and Stuetzle, 1981). Given inputs x = (z1,...,2,)7 and output y, then the
PPR model is

where o, denotes a vector of constants of appropriate length, 3,, is a constant and the
functions ¢,, are estimated nonparametrically and are scaled to have mean zero and unit
variance. Note that, in comparison with a NN model, the “activation” functions ¢,, are
estimated from the data rather than given some pre-specified form such as the logistic.
Setting (#;—1, ¢—2, ¥t_12, T+—13) as the input and z, as the output, we first determined
that the best choice of My is 1 as larger values improve the fit to a negligible extent.
The function ¢; turns out to be virtually linear with a; = (0.504, -0.008, 0.681, -0.531).
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Figure 5: Predicted response (in scaled units) for the NN(1,2,12,13;2) model along the
direction of the first principal component of {x;_1, x1_2, 412, T;_13} as x;_; varies (solid
line). Also shown is the predicted response along the first principal component perturbed
by +0.1,+£0.2 and £0.3 in the direction of the second principal component
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lags 1,2,12 and 13, are shown with solid lines. The £2 standard error confidence bands
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no. of Predictions

pars. S o AIC BIC SSus SSis
4 1.181 0.101 -540.9 -525.8 0.322 0.507

Table 7: Results for the linear regression model

The small coefficient for z;_, implies again that this term is not needed and the PPR
model obtained is very similar to the earlier GAM model. It is rather more difficult to
make predictions using a PPR model since the “activation function” is estimated using
the “Supersmoother” method which does not lend itself readily to extrapolation. This
could be modified in principal but would involve rewriting the software. The fitted Sum
of Squares (S) for the PPR model is 1.145 which is comparable to the value for the GAM
model.

It may seem strange that the GAM and PPR models give “activation” functions
which are approximately linear, in contrast to the logistic function for the NN model. In
fact the logistic function is close to linear in its midrange. Hence the similarity.

All this suggests that we could use a simple linear regression model with {z;_1, 12, T4_13}
as explanatory variables. The fitted linear regression equation is

¢y = 0.0322 + 0.7824x;_1 + 1.07202;_12 — 0.839424_13

Note that the coefficients are almost proportional to the corresponding ones obtained
by PPR. Predictions are easily made using a linear regression model and the results are
shown in Table 7. Comparing with Table 3, we see the forecasts are excellent and the
model gives the smallest value for the BIC yet seen!

6 Results for a different time period

It is interesting to see if there is any qualitative change in the results if we try to predict
from a different part of the seasonal cycle over a different time period. We extended the
test set to the last 18 monthly observations (so that there were six less observations in
the training set) and tried various NN models. The results are shown in Table 8.

The NN model with the best BIC is NN(1,12,13;1) as it was in Table 3 and gives
reasonable 1-step forecasts considering that the measure of prediction is now a sum of
squares over 18 observations (so that the above figures should be discounted by one third
to compare them with the 1-step forecasts of the last 12 observations). The multistep
forecasts are much worse than before, partly because they involve going over one year
ahead. The NN(1,12;2) model actually gives better MS forecasts but it is worrying that
none of the NN models gives such a good BIC or such good forecasts as the airline model.
In other respects the results are qualitatively similar to those in Table 3. NN models
with higher numbers of parameters tend to give better fits but worse forecasts. The use
of AIC is not enough to penalize additional parameters and BIC is recommended.
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no. of

hidden no. of Predictions
lags neurons pars. S o AIC BIC SSus SSis
1,12 1 5 2.383 0.147 -430.9 -412.2 1.729 0.958
1,12 2 9 2.149 0.143 -434.7 -401.1 1.331 0.992
1,12 4 17 1.815 0.137 -438.0 -374.4 3.275 3.296
1,12,13 1 6 1.090 0.101 -512.5 -490.1 2.591 0.664
1,12,13 2 11 0.903 0.094 -523.7 -482.7 2.050 0.600
1,12,13 4 21 0.688 0.086 -534.5 -456.2 4.929 2.016
1,2,12,13 1 7 1.082 0.101 -511.3 -485.2 2.980 0.671
1,2,12,13 2 13 0.906 0.095 -519.4 -471.0 18.10 1.484
1,2,12,13 4 25 0.644 0.086 -533.8 -440.7 5.241 4.183
BJ 2 1.048 0.097 -524.9 -519.5 0.612 0.470

Table 8: Results for NN models fitted to first 126 observations

7 Discussion

The airline data used in this paper was one of three series used in a case study paper by
Tang et al. (1991). They found that NN models gave comparable forecasts to those from
the Box-Jenkins approach, but unfortunately give few details on how the NN models
were actually fitted and do not for example say what activation function was used or if
the data were transformed (logged). Judging by the graphs and tables, we guess that
the authors have scaled the data by dividing by 1000 so that all forecasts lie in the range
(0,1). This means that they could have used the logistic function at the output stage. If,
as stated in their paper, the authors really did set the number of hidden neurons to equal
the number of inputs (which could be as high as 24), the number of weights will have
sometimes exceeded the number of observations. The paper is written from the point of
view of computer scientists and, for us, raised more questions than it answered.

We did carry out a second analysis using the sales data from Chatfield and Prothero
(1973) and the results are reported in detail in Chatfield and Faraway (1996). Broadly
speaking, the results regarding the difficulties in fitting NN models were qualitatively
similar.

We do not claim that analysing one or two time series can tell us much, if anything,
about the general comparative forecasting ability of NN and Box-Jenkins models. The
airline data is for example quite different to the time series used in the Santa Fe compe-
tition, which were much longer (several thousand observations) and in several cases more
clearly non-linear. There NN models seem generally more appropriate, though, for the
one financial time series (exchange rate data), there was a “crucial difference between
training and test set performance” (Gershenfeld and Weigend, 1994, p. 40). Out-of-
sample predictions from the fitted NN model were no better than those from a random
walk! All we can say from our experience is that NN models are not clearly better than
alternatives, and that, in Table 8, they actually appear inferior to Box-Jenkins.
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We realise that NN models can be elaborated in various ways, for example by allowing
skip-layer connections, extra hidden layers, feedback connections, and weight decay, but
the price of extra versatility is to increase the potential for going astray. With such short
series, we think there are already more than enough choices to be made.

In conclusion we suggest that our case study does allow us to make the following
general points:

1. It can be dangerous to adopt a a ‘black-box’ approach to NN modelling. Great
care is need to choose (i) an appropriate set of input variables; (ii) an appropriate
architecture; (iii) appropriate activation functions (which need not be the same at
the hidden layers as at the output unit(s); (iv) an appropriate numerical procedure
for fitting a NN model. In particular it is necessary to choose sensible starting
values for the weights for the training algorithm and it may be necessary to scale
the data first.

2. Adding extra hidden units increases the number of parameters in a NN model.
This may lead to an improvement in fit but may well lead to a deterioration in
out-of-sample predictions. Our results suggest that, when comparing models, the
use of AIC is not enough to penalize the addition of extra parameters. Rather the
use of BIC is indicated.

3. There is plenty of scope for going for going badly wrong with NN modelling (as
there is for many other sophisticated statistical techniques).

4. The use of Generalized Additive Models and Projection Pursuit Regression can be
useful in exploring a set of data in order to decide what model is appropriate.
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Appendix

Software for fitting neural nets to time series data may be found on WWW at
hitp://www.stat.lsa.umich.edu/~ faraway/ together with full details on installation and
use. We used various S-PLUS functions from Venables and Ripley (1994) (including nnet
and nnet.Hess) in conjunction with some functions written by the first author. Some
knowledge of S-PLUS is required for the software to be useful.

Here is an example of its use, where we read in the airline data and rescale it by
dividing by 100 in the first command line. A NN(1,12;2) is fit to the first 132 observations
in the second line. We restart the algorithm 50 times from different random starting
weights and take the best of the models found. A summary of the fit is requested in the
third line.

> air <- scan("air.data")/100

> g <- nnts(air[1:132],c(1,12),2,retry=50)
> summary(g)

a 2-2-1 network with 9 weights

Unit 0 is constant one input
Input units: Lag 1=1, Lag 12=2,
Hidden units are 3 4

Output unit is 5

0->3 1->3 2->3  0->4 1->4 2->4 0->5 3->6  4->5
-0.10 1.26 -1.31 -0.10 0.66 -0.55 -7.43 -15.60 31.27

Sum of squares is 2.310301
AIC : -456.0137 , BIC : -421.9262 , residual se : 0.1442689

We can now predict the next 12 observations.

> predict(g,12)
3.997191 3.803972 4.383948 4.370344 4.652647 5.185713 5.889187 6.055508
4.930448 4.410727 3.994916 4.466562
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